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Dissipative and dispersive optomechanical couplings are experimentally observed in a photonic crystal
split-beam nanocavity optimized for detecting nanoscale sources of torque. Dissipative coupling of up
to approximately 500 MHz/nm and dispersive coupling of 2 GHz/nm enable measurements of sub-pg
torsional and cantileverlike mechanical resonances with a thermally limited torque detection sensitivity
of 1.2 × 10−20 Nm=

ffiffiffiffiffiffi
Hz

p
in ambient conditions and 1.3 × 10−21 Nm=

ffiffiffiffiffiffi
Hz

p
in low vacuum. Interference

between optomechanical coupling mechanisms is observed to enhance detection sensitivity and generate a
mechanical-mode-dependent optomechanical wavelength response.
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Optical measurement and control of mechanical vibra-
tions are at the heart of many technological and funda-
mental advances in physics and engineering, from sensitive
displacement and force detection [1–9] to proposed obser-
vation of gravitational waves [10] and studies of the
quantum properties [11] of massive objects [12–14].
Nanophotonic implementations of cavity-optomechanical
systems [15] localize light to subwavelength volumes,
enhancing optomechanical coupling between photons
and phonons of nanomechanical structures [6,16,17].
Harnessing this optomechanical interaction has enabled
milestone experiments, including ground-state cooling
[13,18], mechanical squeezing of light [19], and optome-
chanically induced transparency [20,21]. Typically,
optomechanical coupling arises in cavity-optomechanical
systems from a dispersive dependence of the nanocavity
resonance frequency on the nanocavity geometry, which
is modulated by mechanical excitations. In this paper,
we demonstrate that dissipative optomechanical coupling,
where mechanical excitations modulate the nanocavity
photon lifetime, can also play a crucial role in the optical
transduction of nanomechanical motion. In particular,
we demonstrate the dissipative-enhanced optomechanical
readout of a cantilever integrated directly within a nano-
cavity and realize an optomechanical torque detector whose
sensitivity of approximately 1.3 × 10−21 Nm=

ffiffiffiffiffiffi
Hz

p
prom-

ises to significantly advance detection of phenomena in
studies of nanomagnetic [22,23] and mesoscopic [24]

condensed-matter systems, optical angular momentum
[25], and magnetometry [26]. We also observe interference
between dissipative and dispersive coupling mechanisms,
which reveals details of the nature of the nanomechanical
motion and may open new avenues in optomechanical
control [27–31].
The nanocavity optomechanical system studied here, an

example of which is shown in Fig. 1(a), provides a unique
platform for studying dispersive and dissipative optome-
chanical couplings and their impact on sensing and
measurement. These photonic crystal “split-beam” nano-
cavities support high optical quality factor (Qo) modes
localized between two cantilever nanomechanical resona-
tors, which are patterned to also serve as optical “mirrors.”
The mirrors can move independently and support mechani-
cal resonances whose properties can be customized through
design of their mechanical supporting structure. In the
device under study, one of the mirrors is suspended by a
single mechanical support. Mechanical resonances of this
mirror can be efficiently actuated by coupled sources of
torque, as illustrated in Fig. 1(b), potentially allowing
sensitive readout of a variety of nanomagnetic and meso-
scopic systems [22–26].
Optomechanical coupling in split-beam nanocavities is

strongest when mechanical motion of the mirrors modifies
the nanocavity mirror gap, effectively changing the nano-
cavity length, resulting in a dispersive coupling to the
nanocavity optical frequency ωo. A more striking property
of split-beam nanocavities is the strong dependence of the
nanocavity internal photon decay rate γi on the mirror gap,
resulting in dissipative optomechanical coupling [27–31].
Additional dissipative coupling arises when the motion of
the mirror modulates the nanocavity external photon
decay rate γe into an external coupling waveguide.
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These interactions can be probed by monitoring fluctua-

tions in the transmission TðλÞ of a waveguide coupling light
into and out of the nanocavity, as illustrated in Fig. 2(a). For
cavity-optomechanical systems operating in the sideband-
unresolved regime, a shift dx in the mechanical resonator
position modifies T by

dT ¼
�
gOM

∂T
∂ωo

þ gi
∂T
∂γi þ ge

∂T
∂γe

�
dx; ð1Þ

where gOM ¼ dωo=dx is the dispersive optomechanical
coupling coefficient, and gi ¼ dγi=dx and ge ¼ dγe=dx are
the intrinsic and external dissipative coupling coefficients,
respectively. The derivatives in Eq. (1) can be derived from
cavity-waveguide coupled-mode theory and are given in
the Appendix. A key feature is that j∂T=∂γi;ej are unipolar,
whereas j∂T=∂ωoj is bipolar, as illustrated in Fig. 2(b).
Interference between these terms can result in an asym-
metric optomechanical wavelength response dTðλÞ=dx
with respect to detuning Δλ ¼ λ − λo. Maximum contri-
butions to dT from dispersive, dissipative intrinsic, and
dissipative external optomechanical coupling mechanisms
scale with Qo=ωofð1 − ToÞgOM; 4ð1 − ToÞgi; 8Togeg and

occur when Δλ ¼ fδλ=2; 0; 0g, respectively, where To ¼
TðλoÞ and δλ ¼ λo=Qo. Notably, transduction via ge does
not vanish when To → 1, i.e., for undercoupled nano-
cavities (γe ≪ γi). However, ge itself does vanish as the
fiber taper moves further away from the cavity, resulting
in degradation of the transduction signal.
The critical role of optomechanical coupling for a wide

class of sensing applications is revealed by the minimum
force detectable by a cavity-optomechanical system [26]:

FminðωÞ ¼
�
4kBTemωm

Qm
þ Sn
½GðλÞjχðωÞj�2

�
1=2

: ð2Þ

FminðωÞ describes the minimum actuating force required
to obtain a unity signal-to-noise ratio in the presence of
thermal noise and technical measurement noise. The lower
bound on FminðωÞ is fixed by thermal fluctuations of the
mechanical resonator, given by the first term in Eq. (2), and
determined by the mechanical resonator frequency ωm,
effective mass m, mechanical quality factor Qm, and
temperature Te, where kB is Boltzmann’s constant.
Overcoming technical noise Sn requires a combination
of large optomechanical gain GðλÞ and driving the system
at frequency ω, where the mechanical susceptibility
χðωÞ ¼ ½mðω2 − ω2

m − iωωm=QmÞ�−1 is large. In many
cavity-optomechanical systems, including the split-beam
nanocavities studied here, FminðωÞ is thermally limited at
room temperature, where the thermal phonon population
exceeds 106 for MHz-frequency mechanical resonators. In
such systems, further reducing the effects of technical noise
is advantageous to allow sensitive off-resonance detection,
to improve the measurement resolution, and to enhance the
ultimate device sensitivity in the case of low-Te operation.
In the measurements presented below, dominant contribu-
tions to Sn are from laser noise and photon shot noise,
followed by detector noise. Note that backaction noise is

FIG. 2. Illustration of the effect of mechanical displacement on
the optical response of a cavity with (left) dispersive, (center)
dissipative intrinsic, and (right) dissipative external optomechan-
ical coupling. (a) Change in the resonance line shape. (b) Am-
plitude of the optomechanically actuated signal.

FIG. 1. (a) Scanning electron micrograph of a split-beam nano-
cavity. Top left inset: Top view of the nanocavity overlaid with the
field distribution (Ey) of the optical mode. Left inset: 60-nm-wide
nanocavity central gap. Right inset: Gap separating the suspended
nanobeam from the device layer. Inset scale bars: 500 nm. (b) Dis-
placement fields of split-beam nanocavitymechanical modes of
interest. Dotted arrows indicate the position and direction of torque
for efficient actuation.
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not included in Eq. (2), due to its negligible effect in the
regime of operation studied here.
The optomechanical gain GðλÞ ¼ ηgtijdT=dxðλÞjPi is

determined by Eq. (1), and, for a given waveguide input
power Pi, waveguide transmission efficiency η, and photo-
detector gain gti, can be increased through large gOM;i;e,
high Qo, and optimally tuning λ within the nanocavity
optical mode linewidth. As discussed above, dissipative
external coupling can play an important role in maximizing
G. However, dissipative coupling is often small compared
to dispersive contributions and, to date, has only been
reported experimentally in hybrid cavity-nanomechanical
systems where ge ∼ 10–20 MHz=nm [32,33]. In the split-
beam nanocavities studied below, measurements indicate
that gOM ∼ 2 GHz=nm, gi ∼ 300–500 MHz=nm, and
ge ∼ 2–3 MHz=nm.
The split-beam nanocavity devices studied here are

fabricated from silicon-on-insulator chips consisting of a
220-nm-thick silicon (Si) layer on a 3-μm-thick silicon-
dioxide (SiO2) layer. Using electron-beam lithography,
reactive-ion etching, and a hydrofluoric acid undercut,
pairs of cantilever photonic crystal mirrors are defined,
with a 60-nm gap between them and another at one mirror
end. The resulting split-beam photonic crystal nanocavities,
whose design is described in Ref. [34], support high-Qo
optical modes with ωo=2π ∼ 200 THz (λo ∼ 1550 nm).
The mirror pattern consists of a periodic array of holes,
whose dimensions are tapered from circles to elliptical
shapes with a profile similar to the gap. Crucially, the band
edge of the photonic crystal “air mode” associated with the
gap unit cell is phase matched with the band edge of the
neighboring elliptical hole unit-cell air mode, minimizing
radiation loss in the gap region and creating a smooth
“optical potential” for localized modes [34–36]. The high-
Qo optical mode supported in the gap region has a field
distribution shown in Fig. 1(a) and is characterized by a
mode volume Vo ∼ 0.3ðλo=nSiÞ3 and radiation loss limited
Qo ∼ 104–106, depending on the minimum realizable
feature size [34]. The design utilized here is predicted
from finite-element simulations (COMSOL) to support a
mode with Qo ∼ 3.5 × 104.
The split-beam nanocavity supports several cantilever-

like mechanical resonances suitable for torque detection,
whose displacement profiles, calculated from simulations
and illustrated in Fig. 1(b), are characterized by effective
mass m ∼ 350–800 fg and frequency ωm=2π ∼ 5–8 MHz
(see Table I). The two lowest-frequency modes involve
pivoting of the suspended mirror about its support. They are
torsional in the ŷ and ẑ directions and are thus labeled Ty
and Tz, respectively. The third mode C is an out-of-plane
cantileverlike mode of the triply anchored mirror.
The optomechanical properties of the split-beam nano-

cavities are measured using a dimpled optical fiber-taper
waveguide to evanescently couple light into and out of the
nanocavity. The dimple is fabricated by modifying the

process in Ref. [37] to use a ceramic dimple mold.
Measurements are performed both in ambient conditions
and in vacuum. A tunable laser source is used to measure
TðλÞ, with the taper either hovering approximately 300–
500 nm above the nanocavity or touching one of the
nanocavity mirrors. The nanocavity studied here supports
an optical mode at λo ∼ 1530 nm, with unloaded Qo ∼
12 000 due to fabrication imperfections, resulting in a dip in
TðλÞ near λo, as shown in Fig. 3(a). Optomechanical
coupling between this mode and nanocavity mechanical
resonances is studied by measuring the rf voltage noise
spectrum S̄VVðλ;ωÞ of the optical power transmitted
through the fiber taper, using a photoreceiver (New
Focus 1811, detector noise 2.5 nW=

ffiffiffiffiffiffi
Hz

p
) and a real-time

spectrum analyzer (Tektronix RSA5106A). A typical
measurement of S̄VV, with the fiber hovering above the
nanocavity and Δλ ∼ −δλo=2, is shown on the right of
Fig. 3(a). Three distinct resonances are visible, indicative of
the optomechanical transduction of the thermal motion
of the Ty, Tz, and C modes. The resonances are identified
with mechanical modes through comparison of measured
and simulated ωm and by observing the effect of touching
the fiber taper on each of the mirrors. As shown in Fig. 3(b),
when the fiber contacts the anchored (suspended) mirror,
the C (Ty and Tz) resonance is suppressed, as it is a
resonance of the anchored (suspended) mirror.
The mechanical displacement sensitivity of these mea-

surements can be calibrated from S̄VVðω ¼ ωmÞ, which is
determined by the thermal amplitude of the mechanical
resonance [7,8]. From the measured and calculated
mechanical mode properties listed in Table I, the noise-
floor displacement resolutions jz; xjNF for the Ty and Tz
modes of approximately 6 and 7 fm=

ffiffiffiffiffiffi
Hz

p
, respectively,

are measured for Pi ∼ 25 μW. The minimum detectable
torque τmin associated with the angular motion θ of each
mechanical mode can be calculated from τ ¼ r × F and
Eq. (2). From the mirror length of 7.5 μm and support
length of 3 μm, a thermally limited torque sensitivity
of the Ty and Tz modes, in ambient conditions, of
τmin ∼ 1.2 × 10−20 Nm=

ffiffiffiffiffiffi
Hz

p
, and on-resonance technical

noise floors of4–7 × 10−22 Nm=
ffiffiffiffiffiffi
Hz

p
, limitedby laser noise

and photon shot noise, are extracted. This technical noise
floor, corresponding to the second term in Eq. (2), has an
effective temperature in the mK range. Measurements are

TABLE I. Split-beam nanocavity mechanical mode properties.

Mechanical mode Ty Tz C

ωm=2π (MHz) 4.9 6.4 7.7
m (fg) 427 805 348
Qm (ambient) 21 83 42
Qm (vacuum) 1800 4400 2400
jz; xjNF (ambient) (fm=

ffiffiffiffiffiffi
Hz

p
) 6.3 6.9 � � �

jτjmin (ambient) (Nm=
ffiffiffiffiffiffi
Hz

p
) 1.2 × 10−20 1.2 × 10−20 � � �

jτjmin (vacuum) (Nm=
ffiffiffiffiffiffi
Hz

p
) 1.3 × 10−21 1.7 × 10−21 � � �
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also performed in low vacuum, where the effect of air
damping is reduced. The limit imposed by thermal noise,
determined by the first term in Eq. (2), can be reduced by
decreasing the mechanical damping of the device. An
increase in Qm of the Ty and Tz modes, from Qatm

m ¼ 21
and 83 in ambient pressure to Qvac

m ¼ 1800 and 4400 at a
relatively low vacuum pressure of 2 Torr, is observed,
as shown in Fig. 3(b) and summarized in Table I. For a
given set of operating conditions, Eq. (2) indicates that
this 2-orders-of-magnitude improvement of Qm will
enhance sensitivity by an order of magnitude, resulting in
thermally limited τmin ∼ 1.3 × 10−21 and approximately
1.7 × 10−21 Nm=

ffiffiffiffiffiffi
Hz

p
at 2 Torr for the Ty and Tz modes,

respectively. Note that higher Qm results in a reduced
bandwidth of the mechanical response χðωÞ and is not
always preferred for practical applications.
The observed torque sensitivity in ambient conditions is

higher and wider in bandwidth than previously demon-
strated optomechanical torque sensors in vacuum [9].
The observed vacuum sensitivity is an order-of-magnitude
improvement compared to previous work [9]. Further
improvements in detection sensitivity can be realized
through improvements in optical and mechanical properties
of the devices. Increasing the fiber-cavity coupling effi-
ciency from the relatively weak coupling demonstrated
here (To ∼ 0.92–0.98), using single-sided coupling via an
integrated waveguide [38], for example, would increase G
by an order of magnitude. Similarly, increasing Qo to
4 × 105 by more accurately fabricating the split-beam
nanocavity designs [34] will also enhance G. Combining
these improvements, torsional sensitivity could reach
10−23–10−22 Nm=

ffiffiffiffiffiffi
Hz

p
.

The role of dissipative optomechanical coupling and
its effect on torque-detection sensitivity is studied by
measuring the wavelength response of the rf spectrum.
Examining S̄VVðλ;ωÞ and TðλÞ in Fig. 3(a), it is evident that
the optomechanical transduction of each of the three
mechanical resonances exhibits a unique λ dependence.
The particular response stems from differing relative
contributions of dissipative and dispersive coupling.
SVVðλ;ωmÞ of a purely dispersive cavity-optomechanical
system, operating in the unresolved-sideband regime,
should follow the slope jdT=dλj2. However, as shown in
Fig. 4(a), the S̄VVðλ;ωmÞ of Ty, Tz, and C do not follow
jdT=dλj2 and are asymmetric with respect to �Δλ. This
asymmetry can be characterized by ζ2 ¼ S̄þVV=S̄

−
VV, where

S̄�VV is the maximum rf sideband signal for Δλ≷0. The
slight Fano profile of TðλÞ, due to nanocavity coupling to
higher-order waveguide modes, would result in a ζ ∼ 0.8
for purely dispersive optomechanical coupling and does not
explain the observed results. In comparison, the S̄VVðλ;ωmÞ
of the out-of-plane Ty and C modes, shown in Figs. 4(b)
and 4(d), are characterized by ζ ∼ 0.24 and 0.19, respec-
tively. The in-plane mode Tz is characterized by ζ ∼ 1.1, as
shown in Fig. 4(c).
The relative contribution of each optomechanical coupling

process can be estimated by fitting S̄VVðλ;ωmÞ with a model
that includes dispersive, intrinsic dissipative, and external
dissipative optomechanical couplings and takes into account
the slight Fano shape of TðλÞ. The resulting fits, estimates
for gOM, gi, and ge, and relative contributions to the
optomechanical response are displayed in Figs. 4(b)–4(d).
The large asymmetry in Ty and C is attributed primarily to
external dissipative coupling, resulting from a variation in
the fiber-nanocavity gap caused by the motion of the mirror,
and is quantified by ge ∼ −2.6 MHz=nm. The Tz mode is
predominantly dispersive, and good agreement with theory
is realized with ge ¼ 0. In order to realize best fits in all of

FIG. 3. (a) S̄VVðλ;ωÞ in ambient conditions, with the fiber taper
hovering approximately 300 nm above the nanocavity; TðλÞ is
superimposed in white. Right side in white: S̄VVðλb;ωÞ at λb
indicated by the blue line. (b) Blue (green) data: Calibrated
displacement spectrum S1=2xx of Ty (Tz), when the fiber taper is
touching the anchored mirror, with λ set at the blue (green) line in
(a). Dotted lines indicate the noise floor. Red data: Uncalibrated
displacement spectrum of C with the taper touching the sus-
pended mirror. Black data: Vacuum measurement of the dis-
placement spectrum, uncalibrated. Left inset: Highlight of Ty
(Qm ¼ 1800) in vacuum. Top right inset: TðλÞ with a fiber-
touching device.
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the modes, significant intrinsic dissipative coupling must be
included, with gi ∼ 300–500 MHz=nm. Note that in the case
of the out-of-plane C and Ty modes, contributions from ge
effectively double the displacement sensitivity of the opto-
mechanical measurement. Furthermore, even for modest ge,
the relative contribution to the optomechanical gain G is
significant, despite theweak waveguide-nanocavity coupling
used here, owing to Gjmax ∝ To for external dissipative
coupling.
The fit values for gOM, gi, and ge are compared with

values predicted from numerical simulations, as summa-
rized in Figs. 4(e)–4(g). A range of values for gi and gOM,
accounting for uncertainties in device fabrication, is calcu-
lated both by directly simulating the optical properties
of the nanocavity resonance as a function of mirror
displacement and by using perturbation theory (see the

Appendix). For Tz, the in-plane motion of the suspended
mirror contributes to gOM and gi. An uncertainty of �5 nm
in the gap size results in the predicted range of gOM and gi
shown in Fig. 4(f). Because of fabrication imperfections
unaccounted for in simulations, experimental values can
be slightly higher; error bars from the fitting routine,
however, fall within the predicted range. For the out-of-
plane Ty and C modes, broken vertical symmetry can give
rise to significant gOM [3]. Notably, a vertical sagging of
the suspended mirror by a plausible offset of 25 nm, as
indicated in Figs. 4(e) and 4(g), can give rise to gOM and gi
values comparable to the fit value for Tz. Note that
renormalization of the nanocavity near field by the wave-
guide can contribute to gOM but that this effect is not
significant for the operating conditions used here. Finally,
the values for ge extracted from the fits are comparable
to the experimentally observed dependence of γe on the
waveguide-nanocavity gap [39].
Several recent studies have explored the potential

for exploiting dissipative optomechanical coupling for
applications in the quantum regime [27–30]. For many
of these proposals, it is desirable to reduce dispersive
coupling and maximize dissipative coupling. The former
can potentially be achieved in split-beam nanocavities.
Simulations indicate (see the Appendix) that internal
dissipative coupling of the Tz mode can become dominant
if the mirror gap is increased by 50 nm, where
fgOM; gig → f0; 1.5GHz=nmg. In the case of the Ty and
C modes, ge=gOM may be increased by reducing the single
mirror “sag" believed to be largely responsible for the
appreciable gOM measured for these modes. This may be
achieved in devices with symmetrically supported mirrors.
In conclusion, we have observed thermally driven dis-

sipative and dispersive optomechanical couplings in a
nanostructure consisting of cantilever nanomechanical
resonators integrated directly within an optical nanocavity.
This nanocavity is capable of detecting torque with
sensitivity of 1.3 × 10−21 Nm=

ffiffiffiffiffiffi
Hz

p
in low vacuum and

1.2 × 10−20 Nm=
ffiffiffiffiffiffi
Hz

p
in ambient conditions. This sensi-

tivity surpasses previously demonstrated optomechanical
torque detection invacuum (4 × 10−20 Nm=

ffiffiffiffiffiffi
Hz

p
inRef. [9])

by an order of magnitude and compares favorably to the
performance of magnetic tweezer torque sensors (approxi-
mately 10−21 Nm in Ref. [40]). The low-temperature oper-
ation of the existing device would allow sensitivity to be
improved by up to 2 orders of magnitude for the technical
noise floormeasuredhere. Further optimizationofQo,Qm,m,
and the optomechanical coupling strength of our device
will serve to further reduce technical and thermal noise [41]
and to improve the measurement sensitivity and resolution.
For example,Qo > 105 [34,36],Qm > 104 [19], and gOM >
10 GHz=nm [36] are potentially within experimental reach.
Realizing a device with this combination of performance
would provide a path toward further improving torque
sensitivity by orders of magnitude, as well as enhancement

FIG. 4. (a) S̄1=2VVðλ;ω ¼ ωmÞ of the C and Ty;z modes. The grey
line is scaled as dTðλÞ=dλ. (b)–(d) Fit (black line) of the
optomechanical coupling model to the S̄1=2VVðλ;ω ¼ ωmÞ of the
(b) Ty, (c) Tz, and (d) Cmodes. The dashed colored lines indicate
relative contributions from dispersive, external dissipative, and
intrinsic dissipative couplings. (e)–(g) Comparison between fit
values (black points) and numerically simulated values (shaded
regions) of gOM, gi, and ge. The widths of the colored boxes
represent numerically simulated ranges due to fabrication
imperfections.
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of the relative strength of dissipative optomechanical
coupling.
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APPENDIX

1. Dispersive and dissipative
optomechanical coupling

Below, we present equations describing the wavelength
dependence of the split-beam photonic crystal nanocavity
optomechanical response. This model takes into account
dissipative and dispersive optomechanical coupling. It also
modifies the usual waveguide-cavity temporal coupled-
mode theory to include indirect coupling between the
cavity and the fundamental waveguide mode, mediated
by higher-order modes of the waveguide.
The detected optical signal consists of the output field in

the fundamental mode of an optical fiber-taper waveguide
positioned in the near field of the optical cavity. The
polarization of this mode is chosen to maximize its
coupling to the cavity. The modal output amplitude is

to ¼ so þ κcoaþ κcþa; ðA1Þ
where so is the input field amplitude and a is the cavity-
field amplitude. Coupling from the cavity field into the
fundamental fiber-taper mode is described by coupling
coefficients κco and κcþ. κco describes coupling from the
cavity directly into the fundamental fiber-taper mode, while
κcþ describes coupling into higher-order modes of the
fiber taper that are converted into the fundamental mode
along the length of the fiber taper. Typically, jκcþj ≪ jκcoj,
as both the cavity to higher-order mode-coupling process
and the fiber-taper higher-order to fundamental mode
conversion rates are small.
The cavity-field amplitude is governed by the equation

of motion

da
dt

¼ −
�
iΔþ γt

2

�
aþ κocso; ðA2Þ

where Δ ¼ ωl − ωc is the detuning between the input field
laser and the cavity frequency, and κoc is the fiber-to-cavity
coupling coefficient. The total cavity-optical loss rate is
given by

γt ¼ γiþp þ 2γe; ðA3Þ

where γe is the coupling rate into the forward (or backward)
propagating mode of the fiber taper, and γiþp describes the
intrinsic cavity loss and fiber-induced parasitic loss into
modes other than the fundamental fiber-taper mode, e.g.,
scattering into radiation modes and light coupled into
higher-order fiber modes that are not converted into the
fundamental waveguide mode within the fiber taper.
In the steady state, _a ¼ 0, and the cavity-field amplitude

is

a ¼ κocso
iΔþ γt

2

: ðA4Þ

In the case of a two-port coupler, unitarity requires that
κoc ¼ −κ�co ¼ i

ffiffiffiffiffi
γe

p
for the phase convention chosen in

Eq. (A1). Assuming that the correction due to coupling to
higher-order taper modes considered here is small, so that
the above relationship still holds, the transmitted field is

to ¼ so

�
1 − γe þ κocκcþ

iΔþ γt
2

�
: ðA5Þ

A key property of the output coupling mediated by the
higher-order waveguide mode is that a priori the complex
phase of κcþ is not defined relative to the phase of κoc, as it
depends on the modal coupling process between the
cavity’s coupling region and the fiber taper. This variable
phase leads to a non-Lorentzian cavity response, as seen by
writing κcþ ¼ κrþ þ iκiþ, where κrþ and κiþ are both real, and
calculating the normalized taper transmission

T ¼ Δ2 þ ðγiþp

2
Þ2 þ 2

ffiffiffiffiffi
γe

p
κrþΔ − ffiffiffiffiffi

γe
p

κiþγiþp

Δ2 þ ðγt
2
Þ2 ; ðA6Þ

where we have only kept terms to lowest order in κi;rþ . For
weak fiber-cavity coupling γe ≪ γiþp, the last term in the
denominator can be ignored, and

T ∼
Δ2 þ ðγiþp

2
Þ2 þ CfγeΔ

Δ2 þ ðγt
2
Þ2 ; ðA7Þ

where Cf ¼ 2κrþ=
ffiffiffiffiffi
γe

p
represents a Fano modification to

the cavity response mediated by the higher-order fiber-taper
modes and is expected to be small.
The optomechanical response of our cavity can be

modeled by considering the dependence of the parameters
in Eq. (A7) on the mechanical state x of the mechanical
resonance of interest. In the unresolved-sideband regime,
where the mechanical frequency is small compared to the
optical linewidth ωm ≪ γt, the fiber transmission adiabati-
cally follows the mechanical oscillations. The amplitude of
the optical oscillations for a given mechanical displacement
amplitude dx is
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dT
dx

ðΔÞ ¼
����gOM ∂T

∂Δþ gi
∂T
∂γi þ ge

∂T
∂γe

����; ðA8Þ

where gOM ¼ dωo=dx is the dispersive optomechanical
coupling coefficient [36], gi ¼ dγi=dx is the intrinsic
dissipative coupling coefficient, and ge ¼ dγe=dx is the
external dissipative coupling coefficient. The derivatives
of Eq. (A7) are

∂T
∂Δ ¼ 2Δð1 − TÞ þ γeCf

Δ2 þ ðγt=2Þ2
; ðA9Þ

∂T
∂γi ¼

γiþp − Tðγiþp þ 2γeÞ
Δ2 þ ðγt=2Þ2

; ðA10Þ

∂T
∂γe ¼

−2γtT þ ΔCf

Δ2 þ ðγt=2Þ2
: ðA11Þ

The influence of the derivatives of the optical resonance
is depicted in Figs. 5(a)–5(c). The derivatives with Cf ¼ 0
are plotted in Fig. 5(d) and scaled in Fig. 5(e). A few
observations can be made. Our device is undercoupled;
γe ≪ γi. Thus, the external dissipative coupling has a larger
influence on the line shape due to the fact that the decay
rate into the fiber is much smaller (γe ≈ 1 GHz) compared
to the cavity linewidth (γi ≈ 30 GHz). We can quantita-
tively compare their magnitude by evaluating the peak
amplitude of the derivatives [7]:

∂T
∂Δ

����
max

¼ dT
dΔ

�
Δ ¼ γt

2

�
¼ ð1 − ToÞ

Qo

ωo
; ðA12Þ

∂T
∂γi

����
max

¼ dT
dγi

ðΔ ¼ 0Þ ¼ 4ð1 − ToÞ
Qo

ωo
; ðA13Þ

∂T
∂γe

����
max

¼ dT
dγe

ðΔ ¼ 0Þ ¼ −8To
Qo

ωo
; ðA14Þ

where To ¼ γ2iþp=γ
2
t is the transmission at optical reso-

nance ωo and Qo ¼ ωo=γt is the optical quality factor.
Because of small fiber-cavity coupling (To ≈ 1), a change
in the fiber coupling has a larger influence on the trans-
mission near resonance such that ∂T=∂γe dominates over
the other terms, as seen in Fig. 5(d). Hence, a small value of
ge can have a greater effect on the change in transmission
than large values of gi and gOM. With a single peak at zero
detuning for ∂T=∂γi and ∂T=∂γe, it is possible to exploit
optomechanics at resonance, provided that dissipative
coupling is stronger than dispersive. By careful mixing
of the coupling rates, optomechanical cooling is also
possible, at least in theory [30]. Cooling arises through
quantum noise interference between dispersive and dis-
sipative couplings, with the best results occurring when
operating with external dissipative coupling [7].

2. Power spectral density and
thermomechanical calibration

The transduction of the resonator mechanical motion to a
photodetected electronic signal, the subsequent analysis of
the electronic power spectral density, and the relationship
between this power spectral density and the optomechan-
ical coupling coefficients of the device are given below.
In the setup used here, a real-time electronic spectrum
analyzer (RSA) samples the time-varying voltage VðtÞ ¼
VOMðtÞ þ VnðtÞ generated by a photoreceiver input with
the optical field transmitted through the fiber taper. For a
given input power Pi and operating wavelength λ, the
optomechanical contribution VOMðtÞ to this signal is
given by

VOMðtÞ ¼ ηgtiPiT½λ; xðtÞ�; ðA15Þ
where gti is the photoreceiver transimpedance gain
(40 000 V/W, assuming a 50-Ω load), and η accounts for
loss between the detector and fiber-taper output. Technical
fluctuations VnðtÞ arise from optical, detector, and elec-
tronic measurement noise.
In general, the fiber-taper transmission T varies, depend-

ing on the general displacement x of the nanocavity
mechanical resonator and the effect of x on the optical
response of the fiber-coupled nanocavity. Here, xðtÞ
describes the thermally driven fluctuations of the nano-
cavity mechanical resonator. The device considered in
this paper is operating in the sideband-unresolved regime
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FIG. 5. Change in optical transmission due to (a) dispersive,
(b) intrinsic dissipative, and (c) external dissipative optomechan-
ical couplings, respectively. (d) Relative strength of the three
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The Fano modification is omitted for display purposes.
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(ωm ≪ γt), where the nanocavity field can “follow” the
mechanical oscillations, allowing us to write

VOMðtÞ ¼ ηgtiPi

�
To þ

dTðλÞ
dx

xðtÞ
�
: ðA16Þ

The RSA demodulates VðtÞ and outputs IQ time-series
data VIQðtÞ ¼ IðtÞ − iQðtÞ, where IðtÞ ¼ cosðωctÞVðtÞ �
hðtÞ and QðtÞ ¼ sinðωctÞVðtÞ � hðtÞ. Here, ωc is the
demodulation frequency, and hðtÞ is a low-pass antialiasing
filter, whose span is determined by the sampling rate (up to
40 MHz). The Fourier transform of the IQ data is related
to the input spectrum by V̄IQðωÞ ¼ Vðωþ ωcÞHðωÞ. Note
that a scaling factor is built into HðωÞ to ensure that
jV̄IQðω − ωcÞj2 can be accurately treated as a single-sided
(positive frequency) representation of the symmetrized
input power spectrum.
The two-sided power spectral density of the optome-

chanical contribution to the input signal is given by

SOMVV ðωÞ ¼ jVOMðωÞj2=Δt; ðA17Þ

whereΔt is the acquisition time of the RSA time series, and
VðωÞ ¼ R

Δt
0 dte−iωtVðtÞ. For clarity, the dc component is

ignored in the following analysis. Using Eq. (A16), SOMVV
can be related to the stochastically varying displacement
xðtÞ of the nanocavity

SOMVV ðωÞ ¼
�
ηgtiPi

dTðλÞ
dx

�
2 1

Δt

����
Z

Δt

0

dte−iωtxðtÞ
����
2

ðA18Þ

¼ G2

Δt

Z
Δt

0

dt0
Z

Δt−t0

−t0
dte−iωtx�ðt0 þ tÞxðt0Þ; ðA19Þ

where G ¼ ηgtiPidT=dx describes the detector and the
optomechanical response. The stationary nature of xðtÞ,
i.e., hx�ðtþ t0ÞxðtÞi ¼ hx�ðt0Þxð0Þi for measurement time
Δt ≫ 2π=γm, allows us to write the above equation as

SOMVV ðωÞ ¼ G2

Z
Δt

0

dt0e−iωt0 hx�ðtþ t0ÞxðtÞi; ðA20Þ

¼ G2ðλÞSxxðωÞ; ðA21Þ

where SxxðωÞ is the displacement-noise spectral density
of the mechanical resonator. The total single-sided power
spectral density measured by the RSA is

S̄VVðλ;ωÞ ¼ G2ðλÞS̄xxðωÞ þ S̄nVVðλ;ωÞ; ðA22Þ

where the contribution from the technical noise is labeled
S̄nVVðλ;ωÞ. Note that the spectral density can also be
expressed as true power over a load resistance Z such that
S̄p ¼ S̄VV=Z in units of W/Hz or dBm/Hz.

The displacement noise of a thermally excited mechani-
cal mode m can be derived from the fluctuation-dissipation
theorem [42] and is given by

S̄xxðωÞ ¼
4kBTeωm

Qm

1

m½ðω2 − ω2
mÞ2 þ ðωωm

Qm
Þ2� ; ðA23Þ

where kB is Boltzmann’s constant, Te ¼ 300 K for the
experiments conducted here, and m is the effective mass
as defined in Ref. [36]. On mechanical resonance ω ¼ ωm,
the power spectral density becomes

S̄VVðλÞjω¼ωm
¼ G2ðλÞ 4x

2
rmsQm

ωm
þ S̄nVVðλÞ; ðA24Þ

where xrms ¼ hx2i1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=mω2

m

p
is the mean thermal

displacement. In the work presented here, backaction
effects are not significant, and the mechanical parameters
of the deviceQm andωm are independent of λ and Pi. These
parameters can be extracted by fitting Eq. (A22) to the
measured spectrum for a given λ (usually chosen to
maximize S̄VV=S̄nVV).
The dispersive and dissipative optomechanical coupling

coefficients gOM, gi, and ge can be extracted from the
experimental data by fitting the λ dependence of SVVðλ;ω ¼
ωmÞ to Eq. (A24). The interplay between optomechanical
coupling mechanisms, as well as the line shape of the
nanocavity optical resonance, is captured by GðλÞ via its
dependence on dT=dx, as described theoretically in
Eqs. (A8)–(A11).
The noise-floor displacement resolution xNF of the

optomechanical transduction for a given set of operating
conditions can be determined from Eq. (A24), from which
the displacement resolution can be calibrated. This method,
widely employed by other researchers (see Ref. [43] and
references therein), is used to calibrate the y axis in
Fig. 3(b). The torque sensitivity is calculated based on
the on-resonance spectral signal and Eq. (2) in the main
text. It can also be theoretically calculated using the
effective moment of inertia Ieff ¼ r2meff , where r is the
distance from the axis of rotation to the position of
maximum displacement, and the thermally limited torque
sensitivity τth ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4kBTewmIeff=Qm

p
. Both methods arrive

at the same result.

3. Numerical simulations of
optomechanical coupling

Numerical simulations are performed to predict the
dispersive gOM and dissipative internal gi optomechanical
coupling coefficients for each of the mechanical modes of
the split-beam nanocavity. In addition to predicting gOM of
the torsionally actuated Tz mechanical mode of the split-
beam nanocavity, these simulations assess the effect on the
optomechanical coupling of fabrication imperfections and
the presence of the optical fiber taper in the nanocavity near
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field. All simulations are performed using COMSOL finite-
element software to calculate the mechanical and optical
mode field distributions and properties ωo, ωm, m, and γi.
Dispersive optomechanical coupling coefficients gOM are
calculated using perturbation theory, as by Eichenfield et al.
[36], and directly from gOM¼dωo=dx, where ωoðxÞ is the
optical mode frequency as a function of mechanical dis-
placement x. Dissipative gi are calculated directly from
dγi=dx. Simulations are performed for a range of device
dimensions consistent with our observed fabrication
tolerances.
The in-plane motion of the Tz mode modulates the split-

beam gap width d, resulting in a large dispersive opto-
mechanical coupling. Figure 6(a) shows gOM for this mode
as a function of an offset Δd away from the nominal value
of d ¼ 60 nm. For Δd ¼ 0, gOM ¼ −1.5 GHz=nm is
predicted, using both perturbation and direct dω=dx cal-
culation techniques. If d is not optimized, small displace-
ments of Tz will also modify γi. For our best estimate of the
gap size, simulations predict gi ¼ 130 MHz=nm; however,
within the uncertainty in position, this value can vary.
Because of the different vertical symmetry of the nano-

cavity optical mode, and the displacement fields of out-of-
plane modes Ty and C, their optomechanical coupling
coefficients gOM and gi are expected to be 0. However, the
vertical symmetry of the optical mode is broken in two
ways in the device studied here. Interactions between the
nanocavity evanescent field and the optical fiber taper, for
small fiber-taper height h above the nanocavity surface,
modify the effective refractive index of the nanocavity. This
effect is described by an h-dependent gOMðhÞ that can reach
the GHz/nm range, as shown in Fig. 6(b). Fabrication
imperfections in the device and the fabrication process
can also break vertical symmetry. Notably, offset bending
between the two mirrors can arise due to differential
internal stresses in each beam and stiction forces due to

the proximity of the substrate. This is referred to as
“sagging” in the discussion below. Figure 6(c) illustrates
the effect of sagging in the suspended mirror, resulting in
an offset in the z direction with respect to the anchored
mirror. Broken vertical symmetry also manifests in nonzero
intrinsic dissipative optomechanical coupling for the out-
of-plane modes. Sagging of the suspended mirror shifts the
nanocavity cavity mode away from the minimum intrinsic
loss γi, resulting in gi ¼ dγi=dx < 0, as shown in Fig. 6(c).
Numerical simulations for the fiber-cavity external

coupling coefficient ge are inconclusive. For typical values
of ge ∼ 2 MHz=nm [32,33,39], the change in Qo for our
cavity (Qo ∼ 12 000) due to a change h of 100 nm would
be in the order ofΔQ ∼ 100, which is below the uncertainty
of our numerical simulations for this specific device.
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