Belén Sotillo, Vibhav Bharadwaj, John Patrick Hadden, Stefano Rampini, Andrea Chiappini, Toney T. Fernandez, Cristina Armellini, Ali Serpengüzel, Maurizio Ferrari, Paul E. Barclay, Roberta Ramponi, and Shane M. Eaton, Visible to Infrared Diamond Photonics Enabled by Focused Femtosecond Laser Pulses Micromachines 8, 60 (2017)

Lucile Veissier, Charles W. Thiel, Thomas Lutz, Paul E. Barclay, Wolfgang Tittel, and Rufus L. Cone, Quadratic Zeeman effect and spin-lattice relaxation of Tm 3+: YAG at high magnetic fields, Physical Review B 94, 205133 (2017) arxiv:1608.06331 [quant-ph]

Thomas Lutz, Lucile Veissier, Charles W. Thiel, Philip J.T. Woodburn, Rufus L. Cone, Paul E. Barclay, Wolfgang Tittel, Effects of mechanical processing and annealing on optical coherence properties of Er3+:LiNbO3 powders, Journal of Luminescence, (in press, 2017) arxiv:1701.05908 [quant-ph]

J. P. Hadden, V. Bharadwaj, B. Sotillo, S. Rampini, R. Osellame, J. Witmer, H. Jayakumar, T. T. Fernandez, A. Chiappini, C. Armellini, M. Ferrari, R. Ramponi, P. E. Barclay, S. M. Eaton, Waveguide-coupled single NV in diamond enabled by femtosecond laser writing, submitted (2017) arXiv preprint arXiv:1701.05885

Marcelo Wu, Nathanael L.-Y. Wu, Tayyaba Firdous, Fatemeh Fani Sani, Joseph E. Losby, Mark R. Freeman, Paul E. Barclay Nanocavity optomechanical torque magnetometry and RF susceptometry Nature Nanotechnology 12, 127 (2017), arxiv:1605.03138 [optics]

Matthew Mitchell, Behzad Khanaliloo, David Lake, Tamiko Masuda, JP Hadden, Paul E. Barclay, Single crystal diamond low-dissipation cavity optomechanics, Optica 3, 963 - 970 (2016), arxiv:1511.04456 [quant-ph]

Sourabh Kumar, Kristine Boone, Jack Tuszynski, Paul E. Barclay, Christoph Simon, Possible existence of optical communication channels in the brain, Scientific Reports 6, 36508 (2016) arXiv:1607.02969 [q-bio.NC]

Thomas Lutz, Lucile Veissier, Charles W. Thiel, Rufus L. Cone, Paul E. Barclay, Wolfgang Tittel, Modification of phonon processes in nano-structured rare-earth-ion-doped crystals, Physical Review A 94 013801 (2016), arxiv:1504.02471 [quant-ph], featured as an Editors' Suggestion

Belen Sotillo, Vibhav Bharadwaj, J.P. Hadden, Masaaki Sakakura, Andrea Chiappini, Toney Teddy Fernandez, Stefano Longhi, Ottavia Jedrkiewicz, Yasuhiko Shimotsuma, Luigino Criante, Roberto Osellame, Gianluca Galzerano, Maurizio Ferrari, Kiyotaka Miura, Roberta Ramponi, Paul E. Barclay, Shane M. Eaton, Diamond photonics platform enabled by femtosecond laser writing
Scientific Reports 6, 35566 (2016), arXiv:1605.01854 [optics]

Behzad Khanaliloo, Matthew Mitchell, Aaron C. Hryciw, Harishankar Jayakumar, David P. Lake, Hamidreza Kaviani, John P. Hadden and Paul Barclay, High-quality single-crystal diamond nanophotonic and nanomechanical resonators, SPIE Newsroom (2016)

Thomas Lutz, Lucile Veissier, Charles W. Thiel, Philip J. T. Woodburn, Rufus L. Cone, Paul E. Barclay, Wolfgang Tittel, Effects of fabrication and annealing methods on spin relaxation and crystallite quality in rare-earth-ion doped powders studied using spectral hole burning, Science and Technology of Advanced Materials 17, 63-70 (2016), arXiv:1509.07862 [cond-mat]

David P. Lake, Matthew Mitchell, Harishankar Jayakumar, Laís Fujii dos Santos, Davor Curic, Paul E. Barclay, Efficient telecom to visible wavelength conversion in doubly resonant GaP microdisks, Applied Physics Letters 108, 031109 (2016), arxiv:1508.06970 [optics]

Behzad Khanaliloo, Harishankar Jayakumar, Aaron C. Hryciw, David Lake, Hamidreza Kaviani, Paul E. Barclay, Single crystal diamond nanobeam waveguide optomechanics, Physical Review X 5, 041051 (2015), arxiv:1502.01788 [optics]

Chris Healey, Hamidreza Kaviani, Marcelo Wu, Behzad Khanaliloo, Matthew Mitchell, Aaron C. Hryciw, Paul E. Barclay, Design and experimental demonstration of optomechanical paddle nanocavities, Applied Physics Letters 107 231107 (2015), arXiv:1509.00448 [optics]

Behzad Khanaliloo, Matthew Mitchell, Aaron C. Hryciw, Paul E. Barclay, High-Q/V monolithic diamond microdisks fabricated with quasi-isotropic etching, Nano Letters 15 5131-5136 (2015)

Aaron C. Hryciw, Marcelo Wu, Behzad Khanaliloo, Paul E. Barclay, Tuning of nanocavity optomechanical coupling using a near-field probe, Optica 2 491-496 (2015) [Supplementary material] arxiv:1407.0106 [cond-mat]

Hamireza Kavani, Chris Healey, Marcelo Wu, Paul E. Barclay, Nonlinear optomechanical paddle nanocavities, Optica 2 271-275 (2015), arxiv:1412.4431 [quant-ph]

Marcelo Wu, Aaron C. Hryciw, Chris Healey, David P. Lake, Harishankar Jayakumar, Mark R. Freeman, John P. Davis and Paul E. Barclay, Dissipative and dispersive optomechanics in a nanocavity torque sensor, Physical Review X 4 021052 (2014), arxiv:1403.6486 [physics.optics] [link] [Featured Research Highlight in Nature Photonics] [Featured by Ars Technica]

Paul E. Barclay, Principles of quantum information processing (QIP) using diamond, in Quantum Information Processing with Diamond: Principles and Applications edited by Steven Prawer and Igor Aharonovich, Elsevier (2014)

M. Mitchell, A. C. Hryciw, P. E. Barclay, Cavity optomechanics in gallium phosphide microdisks, Applied Physics Letters, 104 141104 (2014), arxiv:1309.6300 [physics.optics] [link]

K. Heshami, C. Santori, B. Khanaliloo, C. Healey, V. M. Acosta, P. E. Barclay, C. Simon, Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity, Physical Review A (Rapid Communication) 89 040301(R) (2014), arxiv:1312.5342 [quant-ph] [link]

A. C. Hryciw, P. E. Barclay, Optical design of split-beam photonic crystal nanocavities, Optics Letters 38 1612 (2013), arxiv:1301.0367 [physics.optics] [link]

P.H. Kim, C. Doolin, B.D. Hauer, A.J.R. MacDonald, M.R. Freeman, P.E. Barclay, J.P. Davis, Nanoscale torsional optomechanics, Applied Physics Letters 102, 053102 (2013), arxiv:1210.1852 [cond-mat] [link] [Nature Research Highlight].

J.O. Orwa, K. Ganesan, J. Newnham, C. Santori, P. Barclay, K.M.C. Fu, R.G. Beausoleil, I. Aharonovich, B.A. Fairchild, P. Olivero, A.D. Greentree, S. Prawer, An upper limit on the lateral vacancy diffusion length in diamond, Diamond and Related Materials 25, 6 (2012)

P. E. Barclay, K.-M. C. Fu, C. Santori, A. Faraon, R. G. Beausoleil, Hybrid nanocavities for resonant enhancement of color center emission in diamond, Physical Review X 1, 011007 (2011), arxiv:1105.5137 [quant-ph] [link] (Inaugural issue of Physical Review X)

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, R. G. Beausoleil, Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity, Nature Photonics 5, 301 (2011), arxiv:1012.3815 [quant-ph] [link]

Related News an Views, an interview with Andrei, and the Nature Photonics cover image inspired by this work:

cover image

K.-M. C. Fu, P. E. Barclay, C. Santori, A. Faraon, R. G. Beausoleil, Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities, New Journal of Physics 13, 055023 (2011), arxiv:1102.5372 [quant-ph] [link] (Focus Issue on Integrated Quantum Optics)

2008 - 2010

C. Santori, P. E. Barclay, K.-M. C. Fu, S. Spillane, M. Fisch, R. G. Beausoleil, Nanophotonics for quantum optics using nitrogen vacancy centers in diamond, Nanotechnology 21, 274008 (2010), [link]

K.-M. C. Fu, C. Santori, P. E. Barclay, R. G. Beausoleil, Conversion of neutral nitrogen-vacancy centers to negatively-charged nitrogen-vacancy, Applied Physics Letters 96, 121907 (2010), arXiv:1001.5449 [cond-mat] [link]

K.-M. C. Fu, C. Santori, P. E. Barclay, L. J. Rogers, N. B. Manson, R. G. Beausoleil, Observation of the dynamic Jahn-Teller effect in the excited state of nitrogen-vacancy centers in diamond, Physical Review Letters 103, 256404 (2009), arXiv:0910.0494 [quant-ph] [link]

P. E. Barclay, K. M. Fu, C. Santori, R. G. Beausoleil, Chip-based microcavities coupled to NV centers in single crystal diamond, Applied Physics Letters 95, 191115 (2009) arxiv:09082148 [quant-ph] [link]

C. Santori, D. Fattal, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, On the indistinguishability of Raman photons, New Journal of Physics 11, 123009 (2009). arxiv:0907.2482 [quant-ph] [link]

V. M. Acosta, E. Bauch, M. P. Ledbetter, C. Santori, K.-M. C. Fu, P. E. Barclay, R. G. Beausoleil, H. Linget, J. F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, D. Budker, Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications, Physical Review B 80, 115202, (2009) [link]

P. E. Barclay, K. M. Fu, C. Santori, R. G. Beausoleil, Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers Optics Express 17, 9588 (2009) [link]

P. E. Barclay, O. Painter, C. Santori, K. M. Fu, R. G. Beausoleil, Coherent interference effects in a nano-assembled diamond NV center cavity-QED system, Optics Express 17, 8081 (2009) [link]

C. Santori, P. E. Barclay, K. M. Fu, R. G. Beausoleil, Vertical distribution of nitrogen-vacancy centers in diamond, Physical Review B 79, 125313 (2009) [link]

K.-M.C Fu, C. Santori, P. E. Barclay, R. G. Beausoleil, Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide, Applied Physics Letters 93(23), 234107 (2008) arXiv:0811.0328 [quant-ph] [link]

2003 - 2007

P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, H. Mabuchi, Integration of fiber coupled high-Q SiNx microdisks with atom chips, Applied Physics Letters, v89 (13), art. no 131108  (2006).  (Cover)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. J. Painter,  An optical-fiber-based probe for photonic crystal microcavities, IEEE Selected Areas in Communications v23, pp1321- 1329, July 5, 2005

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, Andreas Stintz and Sanjay Krishna, Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots, Applied Physics Letters, v86, art. no 151106, April 6, 2005

K. Srinivasan, P.E. Barclay, and O. Painter, Photonic crystal microcavities for chip-based cavity QED, Phys. Stat. Sol. (b), v242(6), pp. 1187-1191, March 24, 2005

P.E. Barclay, K. Srinivasan, and O. Painter, Nonlinear response of silicon photonic crystal micresonators excited via an integrated waveguide and fiber taper, Optics Express, Vol. 13, No. 3, pp. 801-820, Feb. 7, 2005

S.A. Maier, M.D. Friedman, P.E. Barclay, and O. Painter, Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing, Applied Physics Letters v86(7), 071103, Feb. 14, 2005

M. Borselli, K. Srinivasan, P.E. Barclay, and O. Painter, Rayleigh scattering, mode coupling, and optical loss in silicon microdisks, Applied Physics Letters, v85(17), pp. 3693-3695, Oct. 25, 2004

K. Srinivasan, P.E. Barclay, M. Borselli, O. Painter, Optical-fiber-based measurement of an ultrasmall volume high-Q photonic crystal microcavity, Physical Review B, Rapid Communications, Vol. 70, 081306(R) Aug. 25, 2004

B. Lev, K. Srinivasan, P.E. Barclay, O. Painter, and H. Mabuchi, Feasibility of detecting single atoms using photonic bandgap cavities, Nanotechnology, Vol 15, S556-S561 2004

P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter, Probing the dispersive and spatial properties of planar photonic crystal waveguide modes via highly efficient coupling from optical fiber tapers, Applied Physics Letters, v85(1), pp. 4-6, Jul. 5, 2004

S.A. Maier, P.E. Barclay, T.J. Johnson, M.D. Friedman, and O. Painter, A low-loss fiber accessible plasmon photonic crystal waveguide for planar energy guiding and sensing, Applied Physics Letters, v84(20), pp. 3990-3992, May 17, 2004

K. Srinivasan, P.E. Barclay, O. Painter, J. Chen, A.Y. Cho, Fabrication of high quality factor photonic crystal microcavities in InAsP/InGaAsP membranes, Journal of Vacuum Science and Technology B, Vol. 22, No. 3, pp. 875-879, May, 2004

K. Srinivasan, P.E. Barclay, O. Painter, Fabrication-tolerant high quality factor photonic crystal microcavities, Optics Express, Vol. 12, No. 7, pp. 1458-1463, Apr. 5, 2004

P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter, Efficient input and output fiber coupling to a photonic crystal waveguide, Optics Letters, Vol. 29, No. 7, pp. 697-699, Apr. 1, 2004

P.E. Barclay, K. Srinivasan, O. Painter, Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and for integration with high-Q cavities, Journal of the Optical Society of America B-Optical Physics, v20(11), pp. 2274-2284, Nov. 2003

K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, Experimental demonstration of a high quality factor photonic crystal microcavity, Applied Physics Letters v83, 1915, 2003

P.E. Barclay, K. Srinivasan, M. Borselli, O. Painter, Experimental demonstration of evanescent coupling from optical fiber tapers to photonic crystal waveguides, Electronics Letters, v39(11), pp. 842-844, May 29, 2003

O. Painter, K. Srinivasan, P.E. Barclay, A Wannier-like Equation for Localized Resonant Cavity Modes of Locally Perturbed Photonic Crystals, Physical Review B, v68, art. no. 035214, Jul. 2003

Copyright Notices

AIP: Copyright© (1998-2002) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

APS: The right, after publication by APS, to use all or part of the Article without revision or modification, including the APS-formatted version, in print compilations or other print publications of the author(s)' and/or the employer's own works, and on the author(s)' and/or the employer's web home page, and to make copies of all or part of the Article for the author(s)' and/or the employer's use for lecture or classroom purposes.

OSA: The right, after publication by OSA, to use all or part of the Work without revision or modification, including the OSA-formatted version, in personal compilations or other publications consisting solely of the Author(s’) own works, including the Author(s’) personal web home page, and to make copies of all or part of the Work for the Author(s’) use for lecture or classroom purposes.

IEEE: The following copyright notice must be displayed on the first page of any hard copy reproduction of IEEE-copyrighted material or on the initial screen displaying IEEE-copyrighted material electronically: © 199x (200x) IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. 

All IEEE publications: Copyright©(1998-2002) IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of California Institute of Technology's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by sending a blank email message to pubs-permissions@ieee.org.

All IEE publication: 
Electronics Letters- Copyright ©(2002) IEE. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the IEE.

IOP publications:
Institute of Physics Publishing permits single copying of single published articles for private study or research, no matter where the copying is done. Multiple copying of journals or parts of journals without permission, however, is in breach of copyright.