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Optomechanical coupling in a nanocavity formed between two cantilevers is tuned through renormalization of the
nanocavity field, allowing reconfiguration of the dominant optomechanical transduction mechanism and spatially
selective optical readout of mechanical resonances. Tuning is mediated through evanescent interaction between
the nanocavity and a fiber taper near-field probe that induces both dissipative and dispersive optomechanical
coupling. Tunable optomechanical coupling can exceed 3 GHz/nm, and is shown to allow readout of out-of-plane
cantilever nanomechanical resonances suitable for sensing applications. © 2015 Optical Society of America
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Nanocavity optomechanical devices [1–6] confine light within
wavelength-scale volumes, where it can interact with nanomechan-
ical resonances whose displacement profiles strongly overlap with
the optical field. Among many recent milestone demonstrations,
nanophotonic optomechanical devices have been used for sensing
[5,7–11], integrated photonics [4,12,13], and fundamental studies
of quantumnanomechanical structures [14,15]. The optomechan-
ical coupling strength central to the performance these devices is
geometry dependent, and may vanish if the spatial symmetry
of the optical and mechanical resonances of interest differs.
Here we demonstrate that a near-field probe can be used to recon-
figure the optomechanical properties of a nanocavity, enhancing
the readout of mechanical resonances with no intrinsic optome-
chanical coupling. An optical fiber taper waveguide positioned
in the nanocavity near field is shown to renormalize the nanocavity
optical mode, modifying both its sensitivity to individual mechani-
cal resonances and the balance of dissipative and dispersive nano-
cavity optomechanical coupling processes [16–21]. We show that
these effects can result in optomechanical coupling exceeding
several GHz/nm to mechanical resonances with no intrinsic
optomechanical coupling—including out-of-plane cantilever
modes used in atomic force microscopy and magnetometry
applications [22]—enabling a wider variety of optomechanical
sensing applications. Furthermore, these effects are shown to allow
spatially selective measurement of mechanical resonances, provid-
ing information describing their spatial localization.

In cavity optomechanical systems, mechanical excitations per-
turb the local dielectric environment, modifying the dynamical
properties of the optical resonances [23]. In nanophotonic cavity

optomechanics, this modification is typically dispersive, quanti-
fied by the dispersive optomechanical coupling coefficient,
gom � dωo∕dx, which describes the change in the optical reso-
nance frequency, ωo, for a displacement, x, of the mechanical
mode [3]. For mechanical modes of planar structures with vertical
out-of-plane motion, such as cantilever resonances, often gom � 0
due to the even vertical symmetry of the nanocavity optical field
intensity, jE j2, and the odd vertical symmetry of the mechanical-
resonance-induced dielectric perturbation, Δε�r; x�. While fabri-
cation imperfections or the presence of a substrate [24] can break
this symmetry, the resulting gom is typically small. Here we dem-
onstrate that an optical fiber taper waveguide placed in the near
field of the nanocavity can introduce both large dispersive and
dissipative optomechanical coupling, whose magnitude can be
tuned by adjusting the fiber position. The dispersive coupling re-
sults from the fiber distorting the vertical profile of the nanocavity
field, renormalizing the optical mode of the structure. Dissipative
coupling [11,16,17] is due to mechanical motion modulating the
fiber–nanocavity distance, and is described by g e � dγe∕dx,
where γe is the nanocavity optical mode energy decay rate into
the waveguide (see Supplement 1, Section 1). This paper show-
cases results that build upon the demonstration of a split-beam
photonic crystal nanocavity previously presented in Ref. [11]
by demonstrating externally induced dispersive coupling together
with larger dissipative coupling, illustrating that these parameters
can be externally controlled with the fiber taper, and using this
control to spatially resolve nanomechanical resonances.

The effects introduced above were studied using a split-beam
photonic crystal nanocavity such as the device shown in the
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scanning-electron microscopy (SEM) image in Fig. 1(a). Devices
were fabricated from silicon using electron-beam lithography and
reactive-ion etching to pattern the Si device layer of a silicon-on-
insulator wafer, followed by selectively removing the underlying
SiO2 layer using HF wet etching. To design a split-beam cavity
with a small mode volume and relatively robust performance
against fabrication imperfections, we started with the grating-de-
fect resonator design paradigm of Liu and Yariv [25], comprising
end-to-end tapered Bragg gratings around a central defect that
imparts a quarter-wave phase shift to the grating coupling coef-
ficient. A split-beam cavity may then be formed by incorporating
a defect with a physical gap (∼80 nm) at cavity center; the total
defect length is chosen to minimize radiative loss, as determined
from finite-difference time-domain (FDTD) simulations [26].
This design supports a mode with a high optical quality factor
(Qo ∼ 104) at a wavelength λo ∼ 1600 nm, whose field profile
overlaps strongly with the central gap region, as shown in
Fig. 1(a). We note that an alternative design approach using el-
liptical holes and yielding resonant frequencies near the grating
band edge is capable of much lower loss (Qo > 106), but requires
stringent control on hole dimensions [27]. Split-beam nanocav-
ities support a variety of mechanical resonances including flexural,
torsional, and rotational motion [11]. Their properties depend on
how the mirrors are anchored to the surrounding chip. In the
device studied here, each mirror is anchored in five locations,
supporting a fundamental cantilever mode with a frequency

fm ∼ 10 MHz and displacement profile shown in the inset of
Fig. 2(b).

The optomechanical properties of these devices were probed
using a 1-μm-diameter dimpled optical fiber taper waveguide
evanescently coupled to the nanocavity near field [28]. The
dimpled taper, with a nominal radius of curvature of ∼25 μm,
was positioned using high-resolution (50 nm) motorized stepper
stages, allowing it to be hovered above the nanocavity or placed
in contact with either of the nanocavity mirrors [Fig. 1(b)].
The taper transmission, T �λ�, was measured using a swept-
wavelength laser and a high-speed photoreceiver (Newport
1811). Optomechanical coupling was studied by measuring
the spectral density of the photodetected signal, SVV�f ; λ�, using
a real-time spectrum analyzer (Tektronix RSA5106A).

Figure 2(a) shows T �λ� when the fiber taper is hovering
∼500 nm above the nanocavity. The sharp dip in transmission
at λo ∼ 1522 nm results from evanescent coupling between the
fiber taper and the optical mode of the nanocavity. From the line-
width, δλ, and minimum transmission, Td, of this resonance, the
loaded and unloaded quality factors of the device are measured to
beQo ∼ 5200 andQ i ∼ 5500, respectively. Figure 2(b) shows the

power spectral density (PSD), S1∕2VV �f �, of the measured fiber
taper transmission signal when the input laser is red detuned
at λ − λo ∼ δλ∕2 and the fiber taper is in contact with one of
the nanocavity mirrors, labeled M1. Several sharp resonances
are visible, each corresponding to optomechanical transduction
of the thermal motion from mechanical resonances of the mirror
not in contact with the fiber, labeled M2.

The large peak in S1∕2VV �f � at fm ∼ 10.5 MHz shown in
Fig. 2(b) is from thermal motion and subsequent optomechanical
coupling from the cantilever (C) mode of M2. When the fiber
taper is positioned in a hovering configuration over the center
of the cavity such that it is very close to (although not in contact

Fig. 1. (a) Scanning-electron micrographs of a split-beam photonic
crystal nanocavity. The nanocavity optical mode (Ey) is superimposed
on the device in the upper image. (b) Schematic of experimental geom-
etry when fiber is hovering above (left) and touching (right) one of the
mirrors. (c) Renormalization of the optical mode by the optical fiber
taper. The field plots show Ey in the center of the cavity with (upper)
and without (lower) the fiber taper. The red–blue scale bar indicates the
normalized electric field amplitude for all figures.

Fig. 2. (a) Fiber taper transmission under weak coupling (taper height
h ∼ 500 nm). (b) Mechanical mode spectrum when the fiber is in contact
with M1. The displacement profile of the fundamental cantilever mode
of M2 is shown next to the corresponding peak (amplitude greatly
exaggerated). (c) Mechanical mode spectrum with the fiber hovering
above the cavity center (zf ∼ 0), as close as possible without touching
the cantilevers (h < 150 nm); the laser detuning was chosen to maximize
the peak magnitude. Fabrication imperfections impart a ∼200 kHz split-
ting between these resonances. (d) Scanning-electron micrograph of the
split-beam cavity center.
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with) M1 or M2, optomechanical coupling is still present, as
shown in Fig. 2(c). In the hovering configuration, the peak in
S1∕2VV �f � has a lower amplitude and a double-peaked structure.
Each of these local maxima can be ascribed to optomechanical
coupling between the nanocavity and the C mode of M1 and
M2, whose mechanical frequencies, f1 � 10.4 MHz and
f2 � 10.6 MHz, respectively, differ due to fabrication variations.
In an ideal structure, small displacements of the C mode would
not be transduced by the optical field, as the average refractive
index sampled by the optical field varies quadratically as one
of the mirrors is displaced vertically. This may be seen from
the expression for gom derived from perturbation theory for
Maxwell’s equations with shifting material boundaries [3,29]:

gom � ωo

2

R
dA

�
dQ
dx · n̂

�
�ΔεjE∥j2 − Δ�ϵ−1�jD⊥j2�R
dV ϵjEj2 ; (1)

where Q�r� is the mechanical displacement field, x is the
mechanical mode amplitude, n̂ is the unit normal vector for
the unperturbed cavity surface, Δϵ � ϵ1 − ϵ2, Δ�ϵ−1� �
ϵ−11 − ϵ−12 , and ϵ1 and ϵ2 are the dielectric constants of the cavity
and surrounding material, respectively. For a C mode, the vertical
symmetry of Q�r� is odd: motion with respect to the top and
bottom surface normals of the cantilever is equal and opposite.
In contrast, the optical mode energy density for the fundamental
TE-like mode possesses even vertical symmetry (see Supplement
1, Section 3.A), causing gom to vanish for C modes. Nonzero op-
tomechanical coupling can be introduced by breaking the vertical
symmetry of the structure. Although this can be achieved through
intrinsic fabrication imperfections, the fiber taper waveguide pro-
vides an effective method for symmetry breaking via position-
dependent dissipation into the waveguide and renormalization
of the nanocavity field.

To gain insight into the optomechanical coupling processes
responsible for the observed behavior, the nanocavity optome-
chanical response was measured as a function of axial fiber posi-
tion z f . When the fiber dimple is offset from the center of the
nanocavity such that it is hovering above M1 (zf ≈ −2 μm), a
single peak at f 1 is observed, as shown in Fig. 3(a). Similarly,
when the fiber hovers above M2 (zf ≈ 2 μm), a single peak at
f 2 appears. These measurements indicate that the observed
optomechanical coupling is not intrinsic to the optical and
mechanical modes of the nanocavity alone: the fiber position
influences the optomechanical coupling processes.

The mechanism responsible for these observations can be re-
vealed from the λ dependence of S1∕2VV �f ; λ�. Figure 3(b) shows
S1∕2VV �f ; λ� for four different fiber taper configurations: hovering
above or touching M1 or M2. In all of the measurements, the
maxima in S1∕2VV �f �, marked by the red dotted lines, were
observed at either f1 or f2. In Fig. 4(a), fitting S1∕2VV �f1;2; λ� fol-
lowing the procedure in [11] yields the dispersive and dissipative
contributions to the total optomechanical signal.

For the hovering measurements, as λ is tuned toward the op-
tical resonance, optomechanical coupling is observed at f1 and f2
when the fiber is positioned above M1 and M2, respectively, as in
the fixed-λ measurements in Fig. 3(a). The maxima in
S1∕2VV �f1;2; λ� are near λ ∼ λo, indicating that the optomechanical
transduction mechanism is dominantly dissipative [11,30]. This
is in contrast to the more commonly encountered dispersive
coupling scenario observed in many nanophotonic cavity

optomechanical systems, for which the optomechanical actuation
vanishes when λ � λo. This dissipative optomechanical coupling
is a result of the fiber–nanocavity coupling rate being modulated
by the oscillating vertical displacement of each mirror’s C mode.
A full transition from dissipatively to dispersively dominated
spectra is shown in Fig. 4(b), where the optomechanical signal
as a function of fiber height above M2 is shown. Note that
for h < 200 nm, fluctuations in fiber position modify λo, as dis-
cussed below and in Supplement 1, Section 4, blurring out the
zero in the optomechanical spectrum.

When the dimpled fiber taper is in contact with mirror M1
(M2), the resonance at f2 (f1) is observed to dominate
S1∕2VV �f ; λ�; an asymmetry in T �λ� is also introduced due to
the coupling to nonlocalized nanobeam modes, which heralds
the breakdown of the ideal-coupler regime [11,31]. In this geom-
etry, the fiber taper interacts with the optical near field and
mechanical motion of the noncontacted mirror, with a separation
determined by the specific shape of the fiber taper dimple, and
damps the mechanical motion of the contacted mirror. In con-
trast to the hovering fiber taper geometry, the λ dependence of
S1∕2VV �f ; λ� in this configuration, shown in the bottom of Fig. 4(a),
is observed to follow dT �λ�∕dλ: it vanishes near resonance, in-
dicating that dispersive coupling is the dominant optomechanical
transduction mechanism. For small gaps between the fiber taper
and the free nanocavity mirror, the presence of the fiber
taper creates a vertically asymmetric dielectric environment
[Fig. 1(c)], renormalizing the nanocavity optical mode profile

Fig. 3. (a) Mechanical spectrum S1∕2VV �f � of cantilever modes with fi-
ber hovering ∼250 nm above M1 (blue) and M2 (green). In each case,
the wavelength was tuned to maximize the mechanical resonance.
(b) S1∕2VV �f ; λ� for the fiber hovering above/touching M1/M2, with
the maxima with respect to f marked by red dotted lines. The DC fiber
transmission for each configuration is shown in blue.
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and creating nonzero dispersive optomechanical coupling. Note
that this renormalization manifests in a static red-shift of λo by
∼2 nm, as seen in Fig. 3(b).

The transition between predominantly dissipative and disper-
sive transduction can be interpreted through finite element
analysis (FEA) of the optomechanical coupling as a function of
vertical fiber taper position, for z f � 2 μm (above M2).
Figure 5(a) compares the predicted and measured g e and gom
as a function of taper height, h, above the nanocavity (see
Supplement 1, Section 2). These simulations predict that for
M2, the dispersive gom�h� decays exponentially with h from a
maximum absolute value of ∼3 GHz∕nm, following gom ∼
g∘ome−h∕Λom with Λom ∼ 75 nm. The dissipative ge decreases from
a maximum value ∼10 MHz∕nm with decay length
Λe ∼ 212 nm. As the dispersive gom decays more quickly than
g e, for small h, contributions to the optomechanical coupling
from gom dominate the optomechanical signal, while for large
h, contributions from g e may dominate.

The drastically different h dependence of gom and g e can be
understood intuitively from perturbation theory (see
Supplement 1, Section 3). In brief, the fiber perturbs the reso-
nance frequency of the cavity ωo via a modification of the nano-
cavity’s effective index. The resulting red-shift scales with the
overlap of the nanocavity evanescent field intensity and the fiber
dielectric [29]; gom consequently shares the exponential decay
length of the nanocavity evanescent field intensity. In contrast,

γe follows from mode coupling between the fiber and nanocavity
field amplitudes [32], and therefore contains interference effects
inherent to phase matching in addition to depending on the over-
lap of the evanescent tail of the fiber mode with the cavity.
As such, the exponential decay of g e depends critically on the
effective coupling length between the dimpled fiber and the cav-
ity, and is generally slow compared to the decay of gom.

Fits to the optomechanical spectra for varying h in Fig. 4(b)
provide experimental estimates of gom and g e. These values are
shown in Fig. 5(a), and have good correlation with behavior from
simulations for h > 200 nm. For small h < 200 nm, the accu-
racy of the estimates of gom and g e is reduced due to instability
in λo resulting from fluctuations in fiber position (see Supplement
1, Sections 1 and 4). These fluctuations reduce the visibility of the
dispersive features in S1∕2VV �λ�, and are in part driven by optical
attraction or repulsion from the cavity [33]. Disagreement in ob-
served and simulated values can also be caused by geometrical
variations of the fiber. For example, if the radius of curvature
of the fiber would be twice as small, simulations predict that
gom would be roughly halved. In addition, for small h the validity
of the standard two-port fiber–nanocavity coupled mode theory
(see Supplement 1, Section 1) used to predict T �h; λ� becomes

Fig. 4. (a) S1∕2VV versus detuning, Δλ � λ − λo, for the fiber hovering
(upper) and touching (lower) the cantilevers, corresponding to the
dotted-line slices in Fig. 3(b). The fits use the model in [11]; Γ is given
by Eq. (2). (b) SVV versus λ for varying h hovering over M2 (zf ≈ 2 μm)
until touchdown (h � 0); T �λ� is shown in red for selected heights.

Fig. 5. (a) Simulated (circles) and experimental (squares) dispersive
(gom) and dissipative (ge) coupling coefficients for the fiber dimple hov-
ering above M2 (zf � 2 μm). Dotted lines indicate fits to numerical sim-
ulations. Experimental values are extracted from Fig. 4(b). Simulations
assume that ge;M1 is negligible (i.e., g e � g e;M2) due to a relatively large
separation between the fiber taper dimple and M1. (b) Simulated Γ�h�
(red line) and B̃∕Ã (black line) predicted from the g e and gom values in
(a). The simulated Γ�h� also uses an approximation of the experimentally
observed T d �h�. Blue squares indicate experimental Γ�h� values taken
from coefficients in (a).
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less accurate, and parasitic effects such as insertion loss become
appreciable.

The effect on the overall character of the optomechanical
transduction is analyzed theoretically and experimentally in
Fig. 5(b). In the sideband-unresolved regime applicable here
(ωm ≪ γt, where γt is the total nanocavity optical mode energy
decay rate), the maximum dispersive and dissipative contribu-
tions to the change in optical transmission are dT

dωo
j
max

�
�1 − T d�Qo∕ωo and dT

dγe
j
max

� −8T dQo∕ωo, respectively (see
Supplement 1, Section 1, and Ref. [11]). The relative balance
of observed dissipative and dispersive signals may therefore be
expressed by

Γ �
����
g e

dT
dγe

����
max

gom
dT
dωo

����
max

���� �
8ge�h�Td�h�

gom�h��1 − Td�h��
; (2)

where Γ > 1 (Γ < 1) corresponds to a predominantly dissipative
(dispersive) contribution to the S1∕2VV �λ� lineshape. This expression
is plotted in Fig. 5(b), using the simulated values for g e�h� and
gom�h� [Fig. 5(a)], for given Td. Note that in the limit of weak
coupling (1 − Td ≪ 1), Γ ≫ 1 is possible even when g e < gom.
The experimentally observed Γ for the device under study approx-
imately follows the red line in Fig. 5(b); both theoretical and ex-
perimental Γ cross from the dispersive to the dissipative regime
(Γ � 1) for h ∼ 200–300 nm. This is generally consistent with
the transition observed in Fig. 4(b) as well as experimental obser-
vations in Figs. 3(b) and 4(a), in which measurements show the
prominence of dispersive coupling when the fiber is touching and
dissipative when hovering. The respective values of Γ for the hov-
ering configurations (upper plots in Fig. 4) indicate that h was
larger for the M1 measurement than for M2: when the taper
is not stabilized through contact with the device, a slow drift
in h of ∼� 50 nm can occur despite the stage positions being
fixed. Disagreement between simulated and measured Γ�h� for
h < 200 nm is ascribed to the nonidealities described above,
including fluctuating taper position and λo, resulting in poor
estimates of ge and gom.

The dramatic increase in Γ with h is promising from an
optomechanical cooling standpoint, especially for systems in
the sideband-unresolved regime [17–21]. Discussions of optome-
chanical cooling in systems exhibiting both dispersive and
dissipative coupling [17,18] are typically couched in terms of
the normalized coupling coefficients Ã � −1

γt

dωo

dx xzpf and B̃ �
1
γt

dγe
dx xzpf , where xzpf is the amplitude of the zero-point fluctua-

tions of the mechanical oscillator. The ratio B̃∕Ã � −g e∕gom de-
termines the optimal detuning required to minimize phonon
occupation. For a given B̃∕Ã and detuning, the maximum achiev-
able optomechanical cooling rate γBA;opt, which in turn deter-
mines the minimum achievable phonon number, scales with
nB̃2, where n is the intracavity photon number [17], indicating
that operating in a regime of large B̃ is desirable in order to min-
imize the phonon number in a dissipatively cooled system. In
contrast to Γ, B̃∕Ã < 1 for the h range considered here [inset
to Fig. 5(b)], limiting the effectiveness of dissipative cooling.
However, further enhancement of the dissipative coupling
strength without introducing additional parasitic loss, for exam-
ple, through stronger fiber–nanocavity coupling γe via phase-
matching considerations [34], would improve the tunability of
the optomechanical coupling behavior described in this Letter

and help achieve dissipative cooling (γBA;opt ∝ nB̃2) of the C
modes of this device. Given that B̃ ∝ dγe

dx
1
γt
, and assuming that

the dissipative coupling scales as dγe∕dx ∝ γe, increasing B̃ by
enhancing γe is limited by the necessary condition that
γt ≥ γe. For the device demonstrated here, γe∕γt ∼ 1∕40, indicat-
ing that increasing B̃ by more than an order of magnitude through
enhancement to γe is possible.

In summary, we have demonstrated that renormalization of
the near field of a photonic crystal nanocavity can be used to in-
duce optomechanical coupling. This enables readout of mechani-
cal cantilever modes that otherwise have zero optomechanical
coupling, and provides a spatially resolved probe of the device’s
mechanical modes, as well as the ability to tune the ratio of dis-
sipative-to-dispersive coupling. Taken together, these effects have
the potential to extend the range of device geometries used for
optomechanics-based sensing applications, and provide opportu-
nities for utilizing dissipative coupling to manipulate optome-
chanical systems.
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See Supplement 1 for supporting content.
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