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This document provides supplementary information to "Near-field tuning of optomechanical 
coupling in a split-beam nanocavity," http://dx.doi.org/10.1364/optica.2.000491. The relative con-
tribution of dispersive vs. dissipative optomechanical coupling in a nanophotonic “split-beam” cavity 
(SBC) can be tuned by using an optical fiber taper to perturb the cavity’s optical near field. First, we 
briefly describe a model for optomechanical coupling between a fiber and a cavity which includes 
both dispersive and dissipative transduction. Next, we discuss in more detail the assumptions used in 
our numerical simulations of the external dissipative optomechanical coupling coefficient, ge. We 
further present perturbative approximations for gom and ge, by way of elucidating the principal 
physical processes which give rise to the optomechanical transduction observed in the fiber–cavity 
system. Finally, we show how the dissipative–dispersive coupling transition can also be effected via 
translating the fiber along the nanobeam axis with fixed height. © 2015 Optical Society of America

http://dx.doi.org/10.1364/optica.2.000491.s001

1. DISPERSIVE AND DISSIPATIVE OPTOMECHANICAL
COUPLING

In the following, we present a simplified model for fiber–cavity
coupling in the sideband-unresolved regime, taking into ac-
count both dissipative and dispersive optomechanical coupling;
a more complete discussion may be found in Appendix 1 of Ref.
[1].

We consider an optical fiber taper placed in the near field of
an optical cavity with resonance frequency ωo. Input light from
the fiber couples to the cavity, with the transmitted signal in
the fundamental fiber mode being measured by a photodetector.
The loss channels for the cavity are: 1) coupling into the forward-
or backward-propagating modes of the fiber, each described by
a rate of γe, and 2) intrinsic cavity loss (γi) and fiber-induced
parasitic loss (γp), which we describe collectively by a rate of
γi+p = γi + γp. In the main text, Qi also includes parasitic loss
such that Qi → Qi+p.

For weak fiber–cavity coupling, in which γe � γi+p, the

transmission spectrum of the fiber may be written as [1]

T ∼
∆2 +

(
γi+p

2

)2

∆2 +
( γt

2
)2 , (S1)

where ∆ = ωl−ωo is the detuning of the input laser with respect
to the cavity resonance, γt = γi+p + 2γe is the total cavity optical
loss rate, and we have neglected a Fano modification to the
cavity response brought about by coupling to higher-order fiber
modes that are converted to the fundamental fiber mode.

The cavity’s optomechanical response with respect to a sup-
ported mechanical mode of frequency ωm may be thought of
as stemming from the effect of the global amplitude of the
motion, x, on the parameters in Eq. (S1). In the sideband-
unresolved/“bad-cavity” regime (ωm � γt), the fiber trans-
mission adiabatically follows the mechanical oscillation [2],
such that a mechanical displacement dx yields a correspond-
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Fig. S1. Unperturbed electric field profiles of the fundamental TE-like mode of (a) the split-beam cavity (Ey only) and (b) a 1-µm-
diameter fiber

ing change in transmission given by

dT
dx

(∆) =

∣∣∣∣∣gom
∂T
∂∆

+ gi
∂T

∂γi+p
+ ge

∂T
∂γe

∣∣∣∣∣ . (S2)

In the above, gom = dωo/dx, gi = dγi+p/dx, and ge = dγe/dx
are the dispersive, intrinsic dissipative, and external dissipative
optomechanical coupling coefficients, respectively [1].

Differentiating Eq. (S1) with respect to each of its parameters
yields

∂T
∂∆

=
2∆(1− T)

∆2 + (γt/2)2 (S3)

∂T
∂γi+p

=
γi+p − T(γi+p + 2γe)

∆2 + (γt/2)2 (S4)

∂T
∂γe

=
−2γtT

∆2 + (γt/2)2 . (S5)

We may then compare the contribution of these terms to the
SVV(λ) lineshape by considering their peak amplitudes [2]:

∂T
∂∆

∣∣∣∣
max

=
dT
d∆

(∆ =
γt
2
) = (1− Td)

Qo

ωo
(S6)

∂T
∂γi+p

∣∣∣∣
max

=
dT

dγi+p
(∆ = 0) = 4(1− Td)

Qo

ωo
(S7)

∂T
∂γe

∣∣∣∣
max

=
dT
dγe

(∆ = 0) = −8Td
Qo

ωo
(S8)

where Td = γ2
i+p/γ2

t is the on-resonance transmission depth
and Qo = ωo/γt is the optical quality factor; note that the max-
ima in these derivatives do not all occur at the same detuning
∆. For weak fiber–nanocavity coupling (1 − Td � 1) 1, and
for the mechanical modes with minimal intrinsic dissipative
optomechanical coupling (dγi/dx � dγe/dx), as in the system
studied here, the dissipative contribution to the measured op-
tomechanical signal is dominated by γe [1]. As such, we express

1Note that in this regime contributions to the optomechanical signal from
dγp(x)/dx will be small compared to dγe(x)/dx if |dγp/dx| ≤ |dγe/dx|.

the relative balance of experimentally observed dissipative and
dispersive signal by the ratio Γ given in the main text:

Γ =

∣∣∣∣∣ ge
dT
dγe

∣∣
max

gom
dT

dωo

∣∣
max

∣∣∣∣∣ = 8geTd
gom(1− Td)

. (S9)

2. FEA ESTIMATE OF ge

The system under study is a fiber–nanocavity system in which
the distance h changes the coupling rate γe(h) between the cavity
and both the forward- and backward-propagating waves of
the fiber as illustrated in Fig. 1(b) of the main text. Here h is
defined as the distance between the nanocavity and the outer
boundary of the fiber. The presence of the fiber may also create
other loss channels by scattering light away from the fiber or by
coupling to higher-order waveguide modes. These are bundled
together as parasitic loss rate γp(h) [3]. The nanocavity itself
has a radiation loss rate of γrad, which can be computed via
numerical simulations (FDTD, FEA), and a scattering loss rate
γs due to fabrication imperfections. Together, they form the
intrinsic loss of the nanocavity: γi = γrad + γs. The total loss
rate γt is then given by

γt(h) = γi + γp(h) + 2γe(h). (S10)

To generate the theoretical values for ge(h), and hence Td(h)
and Γ(Td, ge, gom), used in Fig. 4 of the main text, γe(h) was esti-
mated from FEA (COMSOL) simulations of γt(h). This was done
by extracting Qo(h) while translating the fiber vertically above
the (stationary) nanobeam. Since this method does not exactly
model the mechanical mode displacement, the values extracted
are only an approximation. Precisely determining γe(h) given
γt(h) requires knowledge of γp(h). Here, we assess γp based
on experimentally observed Td(h = 0) and γi = γt(h → ∞),
from which the ratio γe(0)/(γe(0) + γp(0)) = 0.4 was extracted.
Making the simplifying assumption that γe/(γe + γp) is con-
stant for all h allows an estimate of γe(h) to be determined from
the simulated values of γt(h).

This procedure likely overestimates γp for h > 0, as γp typ-
ically decays with h quickly compared to γe, i.e. the coupling
becomes more ideal as h increases [3]. As a result, this procedure
may underestimate γe for large h, and underestimate the decay
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constant Λe of ge. However, the key features in Figure 5, notably
that Λe > Λom, and that Γ = 1 when h ∼ 300 nm, are not found
to be significantly affected by these uncertainties.
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Fig. S2. Comparison between simulated (red line) and experi-
mental (blue circles) values of (a) optical quality factor Qo and
(b) shift in wavelength ∆λ/λ at various fiber heights when
hovering above M2 (zf = 2 µm).

Figures S2(a) and (b) show experimental and FEA-simulated
values for the optical quality factor Qo and the shift in wave-
length ∆λ/λ, respectively, of the cavity resonance. The good
agreement in Qo gives confidence in our approximation of ge.
The smaller shift in wavelength observed in our experiments
compared to simulations could correlate to the lower gom values
in Fig. 5(a).

In principle, γp(h) could be measured experimentally; how-
ever, this was difficult in the system under study due to the
relatively small h < 500 nm at which coupling was observed
(resulting in significant fiber taper insertion loss) and the poor
contrast of the measured nanocavity resonance. In future, fabri-
cation of nanocavities with higher Qo may address this difficulty.

3. PERTURBATIVE APPROXIMATIONS FOR gom AND ge

To gain insight into the physical mechanisms governing the
effect of the fiber taper on gom and ge, we evaluate the shift in
cavity resonance frequency, ωo, and coupling rate between the
fiber and cavity, γe, using first-order perturbation theory.

A. Unperturbed cavity and fiber fields
The unperturbed cavity field Ec, the dominant y-component of
which is shown in Fig. S1(a), was calculated using FDTD sim-
ulations [4] of the cavity geometry as determined from SEM
images of the device. The dielectric profile of the cavity, εc(r),
is assumed to have inversion symmetry; in particular, the circu-
lar hole radii and positions are specified to be symmetric with
respect to the z = 0 plane. The fundamental TE-like cavity

mode (E-field even in x, odd in y) has a resonance wavelength
of ∼1612 nm, a quality factor of 1.2× 104 (limited by scatter-
ing in the x and y directions), and an effective mode volume of
∼ 0.35 (λ/n)3.

The unperturbed fiber taper fields were calculated using
a frequency-domain eigenmode solver [5], assuming a SiO2
(nf = 1.44) fiber with a diameter of 1 µm in air. This fiber sup-
ports a single TE-like mode at a wavelength of 1612 nm, with a
propagation constant β = 4.5 µm−1.

B. Cavity resonant frequency

The first-order correction to the resonant frequency of an electro-
magnetic cavity due to a change in permittivity may be calcu-
lated using [6]

∆ωo = −ωo

2
〈Ec|∆εf|Ec〉
〈Ec|εc|Ec〉

, (S11)

where Ec and ωo are the unperturbed cavity electric field and
resonant frequency, respectively, ∆εf is the perturbation of the
local dielectric environment due to the fiber, and 〈 〉 represents
integration over all space. For the geometry considered in this
paper, ∆εf = εf − 1, with the integral restricted to the region
inside the fiber taper. As in the finite-element calculations in Fig.
4(a) of the main text, we model a dimpled fiber with a 25 µm
radius of curvature (see inset to Fig. S3).
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Fig. S3. Dispersive coupling coefficient gom calculated using
first-order perturbation theory; the simulation geometry is
shown in the inset. The red (green) line corresponds to an axial
fiber offset zf of 0 (−2) µm from the cavity center. The green
circles are the gom,M1 values from Fig. 4(a) of the main text,
calculated using FEA.

From this expression, we see that the change in the cavity
resonant frequency with h scales with the intensity of the evanes-
cent cavity field overlapping with the fiber. For a cantilever
mode, dx ≡ −dh, such that gom ∼ − d∆ωo

dh decays with the
same quasi-exponential dependence. Fig. S3 plots gom using
this approach for the dimple centered on the cavity (zf = 0 µm)
and offset axially over one of the mirrors (zf = −2 µm); the
latter agrees well with gom calculated using FEA for the full
fiber–cavity system, as shown in Fig. 4(a) of the main text.
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C. Fiber–cavity coupling
An approximation for the cavity loss rate into the fiber, γe, can
be obtained from coupling-mode analysis for a generalized
waveguide–resonator system [7]. Neglecting dispersion, the
loss rate into either the forward- or backward-propagating fiber
mode is

γe =

∣∣∣∣ωε0
4

∫ z2

z1

dz
∫∫

dx dy (εc − 1) E∗c · Ef e−iβz
∣∣∣∣2 , (S12)

where εc is the relative permittivity of the cavity, Ec(x, y, z) is
the unperturbed cavity electric field distribution (normalized to
unit energy), Ef(x, y) is the unperturbed fiber electric field mode
profile (normalized to unit power), β is the fiber mode propaga-
tion constant, and the integrals in x and y are restricted to the
region inside the cavity dielectric. As a simple approximation for
the effect of the dimple curvature, we assume a straight fiber at
a distance h above the cavity and integrate over an effective cou-
pling length ∆z centered at zf (i.e,. z1 = zf − ∆z

2 , z2 = zf +
∆z
2 ).

Assuming dx > 0 corresponds to deflection of the cantilever
toward the fiber, then for a fiber–cavity separation h, we then
have ge ∼ − dγe

dh . Fig. S4(a) plots ge calculated via this approach
for dimple center positions zf of 0 and −2 µm.

Note that ge calculated using this approach does not take
into account contributions from coupling to higher-order fiber
modes that are converted to the fundamental mode, which may
in part explains its lower magnitude with respect to the calcula-
tion shown in Fig. 4(a) of the main text, and as explained in §2
above. Although this treatment is approximate, it captures sev-
eral features of the full FEA approach, including non-monotonic
behavior of ge(h) with zf = 0 µm for certain coupling lengths
(Fig. S4(c), top), and sensitivity of the magnitude of ge (Fig. S4(a))
and its decay length Λe (Fig. S4(b)) to dimple position zf. The
richer physics of this coupling mechanism compared with gom
may be traced to its origin as an interference effect, which does
not enter into the dispersive coupling calculation.

4. DISSIPATIVE–DISPERSIVE COUPLING TRANSITION
VIA AXIAL FIBER MOTION
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Fig. S5. SVV vs. λ for varying axial fiber positions zf along the
nanobeam. The fiber is hovering about h = 100 nm above M2.
At z = 0, the fiber dimple is directly above the center of the
cavity. T(λ) in red is shown for selected heights.

As demonstrated in the main text, the presence of the fiber
affects both the strength and the dispersive/dissipative charac-

ter of the optomechanical signal. With the fiber taper dimple
aligned with the center of the SBC, a transition from predomi-
nantly dissipative to dispersive coupling is observed as the fiber
moves vertically toward the nanobeam, as illustrated in Fig. 4(b).
A complementary measurement further demonstrating this ef-
fect is to monitor the optomechanical signal while moving the
dimple along the nanobeam axis (z direction). When the fiber
taper is far from the center of the cavity, shown on the left in
Fig. S5, the optomechanical coupling is strongly dissipative in
nature. As the fiber moves toward the central gap where the
field is concentrated, its influence increases and gom becomes
dominant by zf = 2 µm. However, at very close proximity to the
center of the cavity (zf ≤ 1 µm), both the optical resonance and
the optomechanical signal become unstable due to the near-field
disturbance of the fiber. This is evident in the noisy nature of
the fiber taper transmission, and the low visibility of the “zero”
in the optomechanical response.
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Fig. S4. Dissipative coupling coefficient ge calculated from mode-coupling theory for a fiber height of 200 nm; the simulation geom-
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